ORGANOMETALLIC COMPOUNDS

XXXV*. PHYSICO-CHEMICAL PROPERTIES OF STERICALLY HINDERED ORGANOTIN COMPOUNDS.

M. GIELEN and M. DE CLERCQ

Université Libre de Bruxelles, Faculté des Sciences, Collectif de Chimie Organique Physique, Avenue F.D. Roosevelt 50, B-1050 Brussels (Belgium) (Received June 19th, 1972)

SUMMARY

The presence of tert-butyl groups on tin very strongly decreases the electrophilicity of trialkyltin halides towards iodide ions and nucleophilic solvents.

The mass spectra of sterically hindered organotin compounds show the expected fragment ions.

INTRODUCTION

Very little is known about sterically hindered organotin compounds. The low melting point of trineophyltin fluoride^{2,4} and the Mössbauer parameters of the trineophyltin halides indicate a tetracoordinate structure for these compounds, whereas trimethyltin halides are associated and pentacoordinated in the solid state and even in solution³. Tetraneopentyltin reacts with bromine in CHCl₃ only very slowly at the reflux temperature of the solvent⁴, whereas tetramethyltin reacts instantaneously with bromine even below 0°.

Tetra-tert-butyltin has not yet been synthesized in spite of some unsuccessful attempts⁵; a new approach to this problem has been undertaken in our laboratory⁶.

We have tried to gather more precise information about the influence of steric effects on the availability of tin in trialkyltin halides towards nucleophiles, by determining the equilibrium constant for the formation of a pentacoordinate complex from R_3SnBr and either iodide ions or solvent molecules.

RESULTS AND DISCUSSION

Determination of the equilibrium constant for $R_3 SnX + I^- \rightleftharpoons R_3 SnXI^-$

The addition of nucleophiles to triorganotin halides does not seem to be very sensitive to steric effects^{3,8}, since trimethyl- and triethyltin bromides complex with

^{*} For part 34, see ref. 1. This paper has been presented at the 5th International Conference on Organometallic Chemistry (Moscow, August 1971): Abstracts No. 206 (Vol. 1, p. 541) and 365 (Vol. 2, p. 375).

iodide ions in acetone to rather similar extents; the values of the equilibrium constants K_1 are K_1 (Me) = 90, K_1 (Et) = 168.

$$R_3SnBr+I^- \xleftarrow{K_1(R)} (R_3SnBrI)^-$$

TABLE 1

DETERMINATION OF THE EQUILIBRIUM CONSTANT $K_1 = [R_3 SnXI^-]/[R_3 SnX] \cdot [I^-]$ AT 20° IN ACETONE

Compound	[<i>I</i> ⁻]₀	$[R_3SnX]_0$	[I ⁻] _{eq}	[R ₃ SnX] _{eq}	[R ₃ SnX1 ⁻] _{eq}	K ₁	Av. K 1
i-Pr ₂ SnCl	1.097	1.146	0.484	0.533	0.613	236)	
- 113-201	1.097	1.442	0.428	0.773	0.659	202	
	1.097	1.768	0.314	0.985	0.783	252 🕻	243
	1.140	0.956	0.555	0.371	0.585	284 .)	
i-Pr-SnBr"	1.089	1.78	0.663	1.35	0.427	48)	
	1.089	2.47	0.567	1.95	0.522	46	
	1.089	3.44	0.479	2.83	0.610	45 }.	40
	1.106	1.71	0.781	1.38	0.325	31	
	1.106	6.24	0.363	5.64	0.643	32)	
i-Bu ₃ SnBr	1.102	5.43	0.231	4.56	0.871	92	
- 1	1.102	3.69	0.322	2.91	0.780	84	
	1.102	2.50	0.409	1.81	0.693	93 }	90
	1.081	1.65	0.533	1.10	0.548	94	
	1.081	1.12	0.671	0.71	0.400	86 }	
t-BuMe ₂ SnBr	1.08	1.20	1.03	1.15	0.05	0.06	0.06
t-Bu ₂ MeSnBr	1.08	1.30	1.08	1.30		≪0.01	≪0.01

All the concentrations have been multiplied by 100.

^a The previously reported results¹⁰ are incorrect owing to the presence of equal amounts of i-Pr₂SnBr₂ and i-Pr₄Sn in the expected i-Pr₃SnBr¹³.

TABLE 2

ELECTROPHILICITY OF STERICALLY HINDERED TRIORGANOTIN HALIDES

R ₃ SnBr	K ₁	Ref.
Me ₃ SnBr	90	3, 8, 10
Et ₃ SnBr	168	10
Bu ₃ SnBr	123	10
i-Bu ₃ SnBr	90	17
i-Pr ₃ SnBr	40	17
Me ₂ -t-BuSnBr	< 0.06	
Me-t-Bu ₂ SnBr	≈0	
i-Pr ₃ SnBr	40	
i-Pr ₃ SnCl	243	

In order to obtain more information on the influence of steric effects on this type of equilibrium, we took some tert-butyltin halides, and examined the inhibition of the debromination of 1,2-dibromo-1,2-diphenylethane¹¹ by the addition of sterically crowded trialkyltin halides; from the results¹⁰ the values of K_1 for these compounds were calculated.

PhCH-CHPh+3 I⁻
$$\rightarrow$$
 I₃⁻+2 Br⁻+PhCH=CHPh
Br Br

Table 2 shows that the presence of tert-butyl groups on tin strongly decreases the electrophilicity of trialkyltin halides.

These results are in agreement with those obtained by Mössbauer spectroscopy¹⁶ for the mixed methyl-tert-butyltin bromides: the ratio ρ =quadrupole splitting QS/isomeric shift IS, which has been described as being related to the

TABLE 3

COUPLING CONSTANTS OF SOME TRIORGANOTIN HALIDES IN DIFFERENT SOLVENTS

Solvent	Me ₃ SnBr	Me2-t-BuSnBr	•	Me-t-Bu ₂ SnBr	
	ΔJ(SnMe) Hz	ΔJ(SnMe) Hz	$\frac{\Delta J(Sn-t-Bu)}{Hz}$	ΔJ(SnMe) Hz	ΔJ(Sn-t-Bu) Hz
CCl ₄	0.0 ^a	0.0 ^b	0.04	0.0 ^d	0.0 ^e
Dioxane	4.6	1.6	-0.2	0.5	0.4
MeCN	6.2	3.4	-0.2	0.9	1.2
t-BuOH	6.6	1.0	-0.2	0.0	0.5
i-PrOH	9.0	1.6	-0.3		0.1
EtOH	9.4	5.6	0.4	0.0	0.0
MeOH	9.5	5.2	0.0	1.0	0.6
DMSO	11.9	12.2	-0.2	5.2	1.8
HMPT	14.4	15.5	- 1.6	11.6	0.6

^a $J(^{117}$ SnMe) 55.0 Hz unchanged after a dilution by a factor of 100. ^b 47.6 Hz. ^c $J(^{117}$ Sn-t-Bu) 87.4 Hz. ^d 39.6 Hz. ^c 79.4 Hz.

TABLE 4

Solvent	Me ₃ SnBr	Me ₂ -t-BuSnBr	Me-t-Bu ₂ SnBr	
CCl.	79.3+4.5	89.5±4.5	98.4±4.5	
Dioxane	86.0	90.9	104.4	
MeCN	88.3	92.6	100.6	
t-BuOH	88.8	90.3	98.9	
i-PrOH	92.3	90.9		
EtOH	92.9	95.1	98.4	
MeOH	93.0	94.5	99.5	
DMSO	96.5	101.1	102.7	
HMPT	100.8	103.6	104.5	

SUM OF THE %-CHARACTER OF THE CARBON–TIN BONDS OF TRIORGANOTIN HALIDES IN DIFFERENT SOLVENTS

coordination number of tin (ref. 7; see however ref. 8 and 9), is equal to 1.65 for Me-t-Bu₂SnBr and to 2.25 for Me_2 -t-BuSnBr¹⁸ whereas Me_3 SnBr gives a value of 2.41, thus suggesting that steric repulsions can also decrease and even prevent the formation of self-complexed aggregates in the solid state at low temperatures.

NMR investigation of the complexation of Me_n -t- $Bu_{3-n}SnBr$ by nucleophilic solvents

Since the complexation of R_3SnX by nucleophiles changes the tin hybridization, it should affect the $J(Sn-C-CH_3)$ coupling constant; hence NMR spectroscopy could be expected to be a good probe for detecting the complexing of triorganotin halides with nucleophiles^{8,12}.

We have recorded the PMR spectra of these mixed methyl-t-butyltin bromides in a series of solvents in order to establish a nucleophilicity scale for the solvents, and at the same time provide an electrophilicity scale for R_3SnX , measured by ΔJ , with CCl_4 taken as reference*, according to

$$\Delta J = J(^{117}\text{SnCCH}_3) \text{ (Solvent)} - J(^{117}\text{SnCCH}_3) \text{ (CCl}_4)$$

The experimental data are given in Table 3.

The known relations between J(Sn-Me), J(Sn-t-Bu) and the % s-character of respectively the Sn-Me and the Sn-t-Bu bonds^{13,14} allow the evaluation of the sum of the % s-characters present in the three hybrid orbitals directed towards the organic substituents. The results are gathered in Table 4 and show (i) that the Sn-C bonds become richer in s-character as the nucleophile becomes stronger, and (ii) the variations of the % s in the tin-carbon bonds of sterically hindered triorganotin

Fragment	X = F	X = Cl	X = Br	X = 1	$X = i - Pr^a$	$X = t - Bu^b$
i-Pr ₃ SnX• ⁺	4.1	2.8	2.3	2.4	1.0	0.4
i-Pr ₂ SnX ⁺	11.9	21.6	24.1	27.0	23.5(a)	4.5
i-PrŜnXH+	2.7	3.5	6.3	7.0	30.1(b)	4.6
SnX ⁺	8.9	13.2	16.2	20.1	11.2(c)	1.6
i-Pr ₃ Sn ⁺	1.7	3.3	1.9	1.8	23.5(a)	8.2
i-Pr ₂ SnH ⁺	1.0	1.1	1.3	1.8	30.1(b)	11.4
i-Pr-cyclo-PrSnH ⁺	5.0	7.0	7.2	4.1	0)	
i-PrSnH ⁺	0.2	1.2	1.3	1.4	21.4	15.7
i-PrSn ⁺	50.3	34.1	27.2	21.6	11.2(c)	12.6
MeSn ⁺	2.7	2.0	1.8	1.8	3.3	6.1
SnH ⁺ ₃	0.2	0.1	0.1	0.2	0.9	1.0
SnH ⁺	7.3	6.7	6.8	6.9	11.5	21.4
Sn ⁺	4.6	3.3	3.6	3.7	5.3	10.7

70 eV MASS SPECTRA OF TRIISOPROPYLTIN HALIDES i-Pr₃SnX, TETRAISOPROPYLTIN AND tert-BUTYLTRIISOPROPYLTIN

There are also minor tin-containing fragment ions: " corresponding to $i-Pr_2SnEt^+$ (0.6), $i-PrSnEt_2^+$ (0.4), $i-PrSnEtH^+$ (0.6), $EtSn^+$ (0.6); " corresponding to $t-BuSnH_2^+$ (1.0), $EtSn^+$ (0.3), $MeSnH_2^+$ (0.3).

TABLE 5

^{*} The coupling constant of Me_3SnBr in CCl_4 is not very different from $J(Sn-CH_3)$ of Me_3SnBr in cyclohexane (54.6 Hz for a 2 M solution, 54.2 Hz for a 0.5 M solution), and possibly cyclohexane might be a more suitable reference.

TABLE 6

Fragment ion $R - Me$ $R = t - Bu$ $R = Y = Et$ $R = Y = Pr$ $T - BushR_{2}Y$ 5 0.4 0.6 0.2" $t - BuR_{2}YSn^{+}$ 5 0.4 0.6 0.2" $t - BuR_{2}YSn^{+}$ 5 0.4 0.6 0.2" $t - BuR_{2}YSn^{+}$ 0.7 44 4 2 $R_{2}YSn^{+}$ 23 20" 21 1 $t - BuR_{2}Sn^{+}$ 1 20" 1 1 2 $R_{2}(CH_{3})Sn^{+}$ 0.4 4 4 1 3 25 RSn^{+} 1 1 2 13 25 RSn^{+} 1 1 2 1 1 $R(CH_{3})Sn^{+}$ 1 1 2 1 RSn^{+}		Relative intensity (total=100)					
t-BuSnR ₂ Y t-BuR ₂ YSn* 5 0.4 0.6 0.2° t-BuR ₂ SN* 0.7 44 4 2 R R 1 4 2 R R 1 4 2 R R 1 1 20° 21 1	Fragment ion	R = Me $Y = Br$	R = t - Bu $Y = Me$	R = Y = Et	R = Y = Pr		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t-BuSnR ₂ Y						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t-BuR ₂ YSn ⁺	5	0.4	0.6	0.2°		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t-BuRYSn ⁺	0.7	44				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t-BuR ₂ Sn ⁺	6	1	4	2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R_2YSn^+	23		20ª	21		
t-BuRSnH ⁺ 1 20^{a} t-BuYSnH ⁺ 12 20^{a} $R_{2}(CH_{3})Sn^{+}$ 0.4 4 $R_{2}SnH^{+}$ 29 30 $R_{2}Sn^{+}$ 6 7 RYSn ⁺ 4 7 7 RSn ⁺ 17 10 13 RSn ⁺ 17 10 13 rBusn ⁺ 4 7 7 YSn ⁺ 20 7 7 CH_{3}Sn ⁺ 1 2 2 SnH ⁺ 4 10 11 9 Sn ⁺ 7 9 5 3 <i>c</i> H_{3}SnRY 1 2 2 <i>c</i> H_3SnRY 1 9 3 2 <i>c</i> HugSnRY 30 21 2 2 <i>c</i> H_3SnR ⁺ 1 10 1 1 <i>c</i> Hausn ⁺ 1 10 1 1 <i>c</i> Hausn ⁺ 1 10 1 1 <i>c</i> Hausn ⁺ 1 1 1 1 <i>c</i> SnH ⁺	t-BuR(CH ₃)Sn ⁺		3		0.2		
t-BuYSnH* 12 20^a $R_2(CH_3)Sn^+$ 0.4 4 R_2Sn^+ 6 29 30 $RYSn^+$ 4 29 30 RYSn+* 6 7 7 7 RSn+* 17 10 13 13 25 RSn+* 17 10 13 14 15 16 YSn+ 20 11 2 20 14 16<	t-BuRSnH ⁺		1	20ª			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t-BuYSnH+		12	20ª			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_2(CH_3)Sn^+$			0.4	4		
$R_2 Sn^+$ 6 $RYSn^+$ 4 $R(CH_3)SnH^+$ 3 0.6 2 $RSnH_2^+$ 13 25 RSn^+ 17 10 13 RSn^+ 17 10 13 RSn^+ 4 13 25 RSn^+ 20 7 1 2 CH_3Sn^+ 1 2 5 3 SnH^+ 4 10 11 9 Sn^+ 7 9 5 3 $r-Bu_2SnRY$ $R=Y=Me$ $R=Y=Et$ $R=Y=Me$ $R=Y=Et$ $t-Bu_2RYSn^+$ 25 30 21 15 12 $t-Bu_2RSn^+$ 3 0.4 10 16 10 $t-Bu_2RSn^+$ 3 2 10 13 $t-Bu_2RSn^+$ 3 2 12 12 $rSnH^+$ 19 12 12 12 12 rSn^+ 19 15 12 12 12 rSn^+ 19<	R_2SnH^+	5		29	30		
$RYSn^+$ 4 $R(CH_3)SnH^+$ 30.62 $RSnH_2^+$ 1325 RSn^+ 171013 $t-BuSn^+$ 447 YSn^+ 20 CCH_3Sn^+ 1 CH_3Sn^+ 12 SnH^+ 41011 9 53 $R=Y=Me$ $R=Y=Et$ $t-Bu_2SnRY$ 30.4 $t-Bu_2RSn^+$ 30.4 $t-Bu_2RSn^+$ 321 $t-Bu_2RSn^+$ 32 $t-BuRSn^+$ 62 $RYSnH^+$ 1015 $tBuRSn^+$ 1512 $rSnH_2^+$ 1512 YSn^+ 1915 YSn^+ 193 SnH^+ 64 SnH^+ 64 SnH^+ 64 SnH^+ 64 SnH^+ 64 SnH^+ 6 SnH^+ 7 4 4	R_2Sn^+	6					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RYSn ⁺	4					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R(CH ₃)SnH ⁺		3	0.6	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RSnH ⁺ ₂			13	25		
t-BuSn + 4 YSn + 20 CH_3Sn + 1 2 SnH + 4 10 11 9 Sn + 7 9 5 3 $t-Bu_2SnRY$ $R=Y=Me$ $R=Y=Et$ $t-Bu_2SnRY$ $R=Y=Me$ $R=Y=Et$ $t-Bu_2SnRY$ 30 21 $t-Bu_2RYSn^+$ 25 30 21 $t-Bu_2RSn^+$ 3 2 2 $t-Bu_2RSn^+$ 3 2 2 $t-BuRSn^+$ 6 2 21 $t-BuRSn^+$ 6 2 21 RYSnH^+ 21 21 21 RYSnH^+ 1 10 1 YSnH_2 12 1 1 YSnH_2 12 1 1 1 YSnH_2 12 1 1 1 YSnH_3 19 3 3 3 SnH^+ 6 4 8 3 SnH^+ 6 4 4 4	RSn ⁺	17	10	13			
YSn *20 CH_3Sn^+ 12SnH *410119Sn *7953 $t-Bu_2SnRY$ $R=Y=Me$ $R=Y=Et$ $t-Bu_2RYSn^+$ 6b30.4 $t-Bu_2RSn^+$ 3021 $t-Bu_2RSn^+$ 32 $t-Bu_2RSn^+$ 32 $t-Bu_RSn^+$ 62 $t-BuSn +$ 62 $t-BuRSn^+$ 62 $RYSnH^+$ 10 $t-BuRSn^+$ 1 $tSnH_2^+$ 12 YSn_{12}^+ 12 $t-Bu(CH_3)SnH^+$ 1 $t-BuSn^+$	t-BuSn+		4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	YSn ⁺	20					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ Sn ⁺			1	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SnH ⁺	4	10	11	9		
$R = Y = Me$ $R = Y = Et$ t-Bu_2RYSn*t6b30.4t-BuRYSn*t253021t-BuRSn*t322t-BuRSn*t1010t-BuRSn*t62RYSn*t335Y(CH_3)SnH*t12YSnH $\frac{1}{2}$ 12YSn+ $\frac{1}{2}$ 12t-BuRSn*t1t-BuRSn*t1SnH*t0.5CH_3Sn*t19SnH*t648Sn*t744	Sn ⁺	7	9	5	3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				R = Y = Me	R = Y = Et		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$t-Bu_2SnRY$			-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t-Bu ₂ RYSn ⁺⁺	6°		3	0.4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t-BuRYSn ⁺	25		30	21		
t-BuRSnH* 1 10 t-BuRSn* 6 2 RYSnH* 21 RYSnH* 35 Y(CH_3)SnH* 1 YSnH2* 12 YSn* 19 t-Bu(CH_3)SnH* 1 t-Bu(CH_3)SnH* 1 t-Bu(CH_3)SnH* 1 t-Bu(CH_3)SnH* 1 t-Bu(Sh)SnH* 1 t-Bu(Sh)SnH* 1 t-Bu(Sh)SnH* 1 t-Bu(Sh)SnH* 1 t-Bu(Sh)SnH* 1 t-Bu(Sh)SnH* 3 t-Bu(Sh)SnH* 3 t-Bu(Sh)Sn* 19 SnH* 6 4 Sn* 7 4	t-Bu ₂ RSn ⁺	3		3	2		
t-BuRSn ⁺ 6 2 RYSnH ⁺ 21 RYSnH ⁺ 35 Y(CH ₃)SnH ⁺ 1 YSnH ² 12 YSn ⁺ 19 t-Bu(CH ₃)SnH ⁺ 1 t-Bu(CH ₃)SnH ⁺ 1 t-BuSn ⁺ 1 t-BuSn ⁺ 1 t-BuSn ⁺ 1 t-BuSn ⁺ 3 SnH ⁺ 6 4 Sn ⁺ 7 4	t-BuRSnH ⁺	1		-	10		
RYSnH+21RYSn+35Y(CH_3)SnH+1YSnH212YSn+212YSn+415YSn+415t-Bu(CH_3)SnH+1t-BuSn+0.5CH_3Sn+19SnH+648Sn+744	t-BuRSn ⁺	6		2			
$RYSn^+$ 3 35 $Y(CH_3)SnH^+$ 1 $YSnH_2^+$ 12 YSn^+ 19 15 12 YSn^+ 19 15 12 $t-Bu(CH_3)SnH^+$ 1 1 1 $t-BuSn^+$ 1 0.5 1 CH_3Sn^+ 19 3 3 SnH^+ 6 4 8 Sn^+ 7 4 4	RYSnH ⁺				21		
$Y(CH_3)SnH^+$ 1 $YSnH_2^+$ 12 $YSn+_2^+$ 12 YSn^+ 19 $t-Bu(CH_3)SnH^+$ 1 $t-BuSn^+$ 1 CH_3Sn^+ 19 SnH^+ 6 Sn^+ 7 4 4	RYSn ⁺	3		35			
YSnH $_2^+$ 12 YSn ⁺ 19 15 12 t-Bu(CH_3)SnH ⁺ 1 1 1 t-BuSn ⁺ 1 0.5 1 CH_3Sn ⁺ 19 3 3 SnH ⁺ 6 4 8 Sn ⁺ 7 4 4	Y(CH₃)SnH⁺				1		
YSn^+ 191512t-Bu(CH_3)SnH^+11t-BuSn^+10.5 CH_3Sn^+ 193SnH^+64 Sn^+ 74	$YSnH_2^+$				- 12		
t-Bu(CH_3)SnH ⁺ 1 t-BuSn ⁺ 1 t-BuSn ⁺ 1 CH_3Sn ⁺ 19 SnH ⁺ 6 Sn ⁺ 7 4 4	YSn ⁺	19		15	12		
t-BuSn ⁺ 1 0.5 CH_3Sn^+ 19 3 SnH ⁺ 6 4 8 Sn ⁺ 7 4 4	t-Bu(CH ₃)SnH ⁺				1		
CH_3Sn^+ 19 3 SnH^+ 6 4 8 Sn^+ 7 4 4	t-BuSn+	1		0.5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH₃Sn ⁺	19			3		
Sn ⁺ 7 4 4	SnH ⁺	6		4	8		
	Sn ⁺	7		4	4		

70 eV MASS SPECTRA OF SOME TERT-BUTYLTIN COMPOUNDS

" R_2YSn^+ and t-BuRSnH⁺ are indistinguishable if R = Y = Et.^b There is also a fragment ion at m/e 165 (intensity 2). C There is also a fragment ion at m/e 193 (intensity 0.4).

bromides are much smaller than for trimethyltin bromide. This means that ΔJ only poorly reflects the complexation by nucleophiles for sterically hindered R₃SnX molecules.

Mass spectra of tri-iso-propyl- and mixed methyl-tert-butyltin halides The mass spectra^{8,15} of triisopropyltin halides have been recorded, and the

356

TABLE 7

Fragment ion	Voltage reading on instrument				
	 20ª	15	12	7.5	
t-Bu ₂ MeSnBr					
t-Bu ₂ MeSnBr• ⁺	13	16	18	≈30	
t-BuMeSnBr ⁺	50	57	63	≈70	
t-Bu ₂ MeSn ⁺	8	7	6		
MeSnBr ⁺	3	3	3		
SnBr ⁺	б	4	3		
t-BuMeSnH ⁺	3	2	1		
t-BuMeSn ⁺	7	6	4		
MeSn ⁺	8	3	1		
t-BuMe₂SnBr					
t-BuMe,SnBr.+	15	22	31	≈60	
t-BuMeŠnBr+	2	3	3		
Me ₂ SnBr ⁺	40	40	39	≈40	
t-BuMe,Sn ⁺	13	15	14		
SnBr ⁺	4	3			
Me,SnH ⁺	8	6	5		
Me_Sn ⁺	8	6	5		
MeSn ⁺	7	2			

MASS SPECTRA OF tert-BUTYLMETHYLTIN BROMIDES AT DIFFERENT POTENTIALS

^a It was confirmed that this reading did correspond approximately with a correct value of 20 eV.

results are summarized in Table 5.

All the expected¹² fragments are present, but noteworthy is the formation of an ion with m/e 205 which is only present for triisopropyltin halides and not for tetraalkyltins containing the isopropyl group such as i-Pr₄Sn or t-Bu-i-Pr₃Sn. The formation of this ion may be accounted for as follows:

Table 6 shows the mono-isotopic mass spectra of some tert-butyltin compounds. All the expected^{15,19} fragment ions are present.

Mass spectra at lower potentials (see Table 7) confirm the sequences for the ease of cleavage of a carbon-tin bond of the molecular ion described before: $t-Bu > Me^{20}$ and $t-Bu > Br^{15}$.

EXPERIMENTAL

The triorganotin halides have been synthesized following a procedure which has been described elsewhere¹³; their NMR spectra have been recorded on a Varian

A60 (5% solutions, with tetramethylsilane as internal standard). The mass spectra were recorded on a Hitachi–Perkin–Elmer RMU-6D mass spectrometer¹⁵.

ACKNOWLEDGEMENTS

The authors thank Prof. J. Nasielski and Prof. J. Reisse for fruitful discussions. They are indebted to Mr. R. Polain and Mr. C. Moulard for recording the spectra. Financial help from the "Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture" (I.R.S.I.A.) is gratefully acknowledged (M.D.C.).

REFERENCES

- 1 M. Gielen and J. Topart, Bull. Soc. Chim. Belg., 80 (1971) 655.
- 2 R. H. Herber, H. A. Stöckler and W. T. Reichle, J. Chem. Phys., 42 (1965) 2447.
- 3 M. Gielen and N. Sprecher, Organometal. Chem. Rev., 1 (1966) 455.
- 4 H. Zimmer, I. Hechenbleicher, O. A. Homberg and M. Danzic, J. Organometal. Chem., 29 (1964) 2632
- 5 W. V. Farrar and H. A. Skinner, J. Organometal. Chem., 1 (1964) 434; S. A. Kandil and A. L. Allred, J. Chem. Soc. A, (1970) 2987.
- 6 R. Fosty and M. Gielen, in preparation.
- 7 R. H. Herber, H. A. Stöckler and W. T. Reichle, Trans. N.Y. Acad. Sci., 26 (1964) 929; W. T. Reichle, Inorg. Chem., 5 (1966) 87.
- 8 M. Gielen, S. Boué, M. de Clercq and B. de Poorter, Rev. Si, Ge, Sn and Pb Comp., 1 (1972).
- 9 J. Nasielski, N. Sprecher, J. Devooght and S. Lejeune, J. Organometal. Chem., 8 (1967) 97.
- 10 M. Gielen, J. Nasielski and R. Yernaux, Bull. Soc. Chim. Belg., 72 (1963) 594; M. Gielen and G. Mayence, unpublished results.
- 11 J. Mulders and J. Nasielski, Bull. Soc. Chim. Belg., 72 (1963) 322.
- 12 M. Gielen and J. Nasielski, J. Organometal. Chem., 1 (1963) 173; 7 (1967) 273.
- 13 M. Gielen, M. de Clercq and J. Nasielski, Bull. Soc. Chim. Belg., 78 (1969) 237.
- 14 M. Gielen, M. de Clercq and B. de Poorter, J. Organometal. Chem., 34 (1972) 305.
- 15 M. Gielen and G. Mayence, J. Organometal. Chem., 12 (1968) 363; S. Boué, M. Gielen, J. Nasielski, J. P. Lieutenant and R. Spielmann, Bull. Soc. Chim. Belg., 78 (1969) 135.
- 16 J. Devooght, M. Gielen and S. Lejeune, J. Organometal. Chem., 21 (1970) 333.
- 17 G. Mayence, Ph.D. Thesis, Brussels, U.I.B., 1972.
- 18 J. Devooght, M. Gielen, S. Lejeune and G. Mayence, in preparation.
- 19 M. Gielen and J. Nasielski, Bull. Soc. Chim. Belg., 77 (1968) 5; S. Boué, M. Gielen and J. Nasielski, Bull. Soc. Chim. Belg., 77 (1968) 43.
- 20 M. Gielen and G. Mayence, J. Organometal. Chem., in press.